.3V/5V, Single-Channel 1.5A Current-Limited Power Distribution Switch

The Future of Analog IC Technology

DESCRIPTION

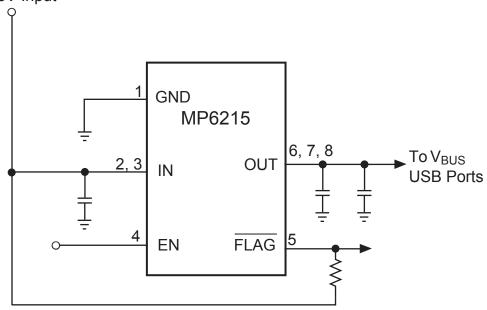
The MP6215 Power Distribution Switch features internal curr ent limiting to prevent damage to host devices due to fau Ity load con ditions. The MP6215 op erates from a 3.3V or 5V nominal input voltage and includes a 90 m Ω Power MOSFET to handle up to 1.5A continuous load with a 2.3A typical curr ent limit. The MP6215 has built-in protection for both over current and increased thermal stress. For over-current protection (OCP), the device will limit the current by going into a constant current mode.

When continuous outp ut overload condition exceeds power dissipat ion of the package, the thermal protection will shut the part off. The device will recover once the device temperature reduces to approx 120°C.

The MP6215 is available in an MSOP8 package with exposed pad.

FEATURES

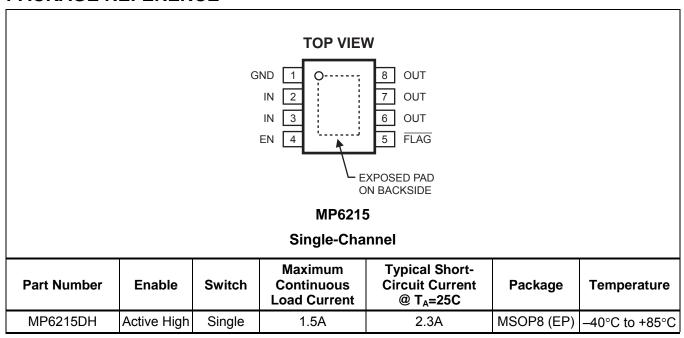
- 1.5A Continuous Current
- Accurate Current Limit
- 2.7V to 5.5V Supply Range
- 140uA Quiescent Current
- Thermal-Sh utdown Protection
- Under-Voltage Lockout
- 8ms FLAG Deglitch Time
- No FLAG Glitch During Power Up
- Reverse Current Blocking


APPLICATIONS

- Notebook PC
- Set-top-box
- Telecom and Network Systems
- PC Card Hot Swap
- USB Power Distribution

"MPS" and "The Future of Analog IC Technology" are Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION


3.3V / 5V Input

SINGLE-CHANNEL

PACKAGE REFERENCE

^{*} For Tape & Reel, add suffix –Z (eg. MP6215DH–Z) For RoHS Compliant Packaging, add suffix –LF (eg. MP6215DH–LF–Z)

ABSOL			VIRA		_	A T	100	(1)
ARSOL	UTE	MΔ	XIMI	IJM	R	ΔΤΙΓ	NGS	('')

IN	0.3V to +6.5V
ON, FLAG, OUT to GND	0.3V to +6.5V
Junction Temperature	150°C
Lead Temperature	260°C
Storage Temperature	65°C to +150°C
Operating Temperature	40°C to +85°C

Thermal Resistance (2)	$oldsymbol{ heta}_{JA}$	$\boldsymbol{\theta}_{JC}$	
MSOP8E	55	. 12	°C/W

Notes

- 1) Exceeding these ratings may damage the device.
- 2) Measured on JESD51-7, 4-layer PCB..

ELECTRICAL CHARACTERISTICS (3)

V_{IN}=5V, T_A=+25°C, unless otherwise noted.

Parameter	Condition	Min	Тур	Max	Units
IN Voltage Range	2.7			5.5	V
Supply Current	EN=High, I _{OUT} =0		140	160	μA
Shutdown Current	Device Disable, V _{OUT} =float, V _{IN} =5.5V		1		μΑ
Off Switch Leakage	Device Disable, V _{IN} =5.5V		1		μΑ
Current Limit	1.6		2.3	3.0	Α
Under-voltage Lockout	Rising Edge	1.95		2.65	V
Under-voltage Hysteresis			250		mV
FET On Resistance	I _{OUT} =100mA		85		mΩ
EN Input Logic High Voltage	2				V
EN Input Logic Low Voltage				0.4	V
FLAG Output Logic Low Voltage	I _{SINK} =5mA			0.4	V
FLAG Output High Leakage Current	V _{IN} =V _{FLAG} =5.5V			1	μΑ
Thermal Shutdown			140		°C
Thermal Shutdown Hysteresis			20		°C
V _{OUT} Rising Time, Tr	V_{IN} =5.5V, CL=1uF, RL=5 Ω	0.9			ms
VOULING TIME, II	V_{IN} =2.7V, CL=1uF, RL=5 Ω	1.7			ms
V _{OUT} Falling Time, Tf	V_{IN} =5.5V, CL=1uF, RL=5 Ω			0.5	ms
V _{OUT} raining time, it	V_{IN} =2.7V, CL=1uF, RL=5 Ω			0.5	ms
Turn On Time, Ton	C_L =100 μ F, RL=5 Ω			3	ms
Turn Off Time, Toff	C_L =100 μ F, RL=5 Ω			10	ms
FLAG Deglitch Time		4	8	15	ms
EN Input Leakage	-1				μΑ
Reverse Leakage Current	OUT=5.5V, IN=GND		0.2	μΑ	

NOTE:

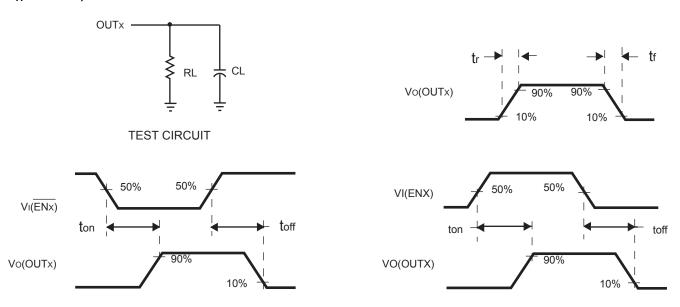
³⁾ Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.

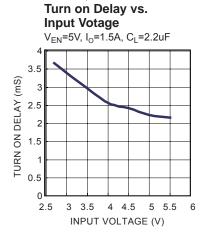
PIN FUNCTIONS

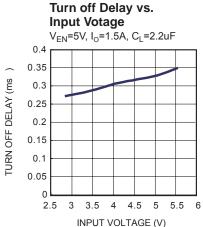
MSOP8E Na	me	Description
1	GND	Ground.
2, 3	IN	Input Voltage. Accepts 2.7V to 5.5V input.
4	EN	Active High
5	FLAG	IN-to-OUT Over-current, active-low output flag. Open-Drain.
6, 7, 8	OUT	IN-to-OUT Power-Distribution Output (for all 3 output pins)

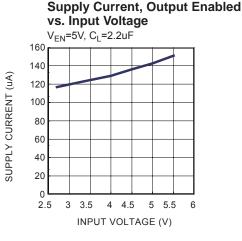
TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = +25$ °C, unless otherwise noted.

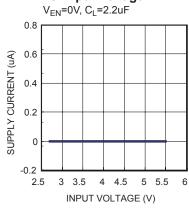


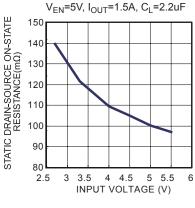

Figure 1—Test Circuit and Voltage Waveforms

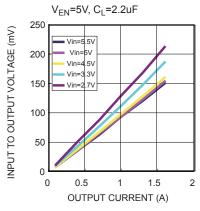

VOLTAGE WAVEFORMS

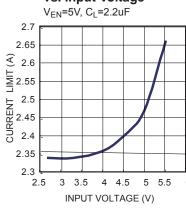


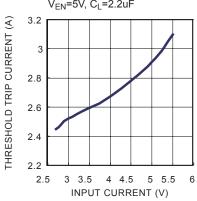
TYPICAL PERFORMANCE CHARACTERISTICS

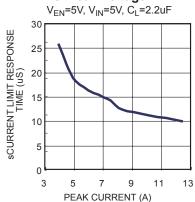

$T_A = +25$ °C, unless otherwise noted.

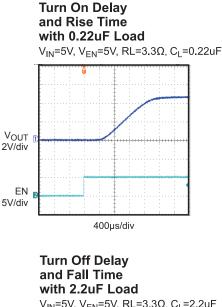


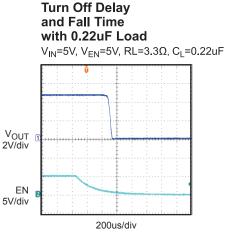

Supply Current, Output Disabled vs. Input Voltage




Input to Output Voltage vs. Load Current

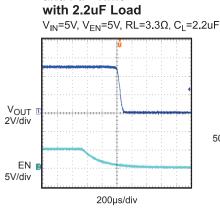

Current Limit vs. Input Voltage

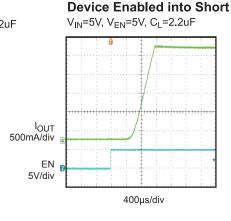

Current Limit Response Time vs. Peak Voltage




TYPICAL PERFORMANCE CHARACTERISTICS

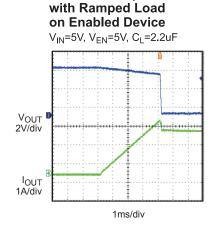
 $T_A = +25$ °C, unless otherwise noted. (continued)

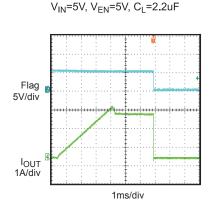



Short Circuit Current

Threshold Trip Current

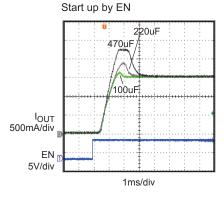
Turn On Delay

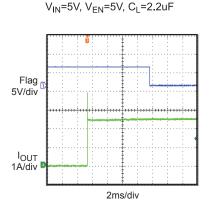



Inrush Current with

 V_{IN} =5V, V_{EN} =5V, R_L =3.3 Ω ,

Different Load Capacitance




1Ω Load

Ramped Load

on Enabled Device

Connected to Enabled Device

FUNCTION BLOCK DIAGRAM

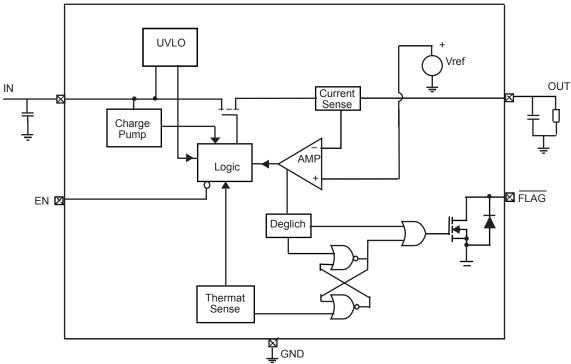


Figure2—Functional Block Diagram

DETAILED DESCRIPTION

Over Current

When the load exceeds trip current (minimum threshold current triggering constant-current mode) or a short is present, MP6215 switches into to a constant-current mode (current limit value). MP6215 will be shutdown only if the overcurrent condition stays long enough to trigger thermal protection.

Trigger overcurrent protection for different overload conditions occurring in applications:

- The output has been shorted or overloaded before the device is enabled or input applied. MP6215 detects the short or overload and immediately switches into a constant-current mode.
- 2) A short or an overload occurs after the device is enabled. After the current-limit circuit has been tripped (reached the trip current threshold), the device switches into constantcurrent mode. However, high current may flow for a short period of time before the current-limit circuit can react.

3) Output current has been gradually increased beyond the recommended operating current. The load current rises until the trip current threshold is reached or until the thermal limit of the device is exceeded. The MP6215 is capable of delivering current up to the trip current threshold without damaging the device. Once the trip threshold has been reached, the device switches into its constantcurrent mode.

Flag Response

The FLAG pin is an open drain configuration. This FAULT will report a fail mode after an 8ms deglitch timeout. This is used to ensure that no false fau It signals are reported. This internal deglitch circuit eliminates the need for extend components. The FLAG pin is not deglitched during an over temp. or a voltage lockout.

Thermal Protection

The purpose of thermal protect ion is to prevent damage in the IC by allowing exceptive current to flow and heating the junction. The die temperature is internally monitored until the thermal limit is reached. Once this temperature is reached, the switch will turn off a nd allow the chip to cool. The switch has a built-in hysteresis.

Under-voltage Lockout (UVLO)

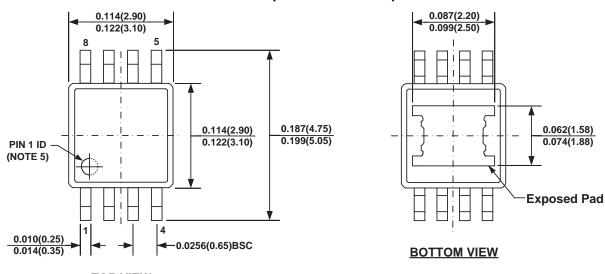
This circuit is used to monitor the input voltage to ensure that the MP6215 is operating correctly.

This UVLO circu it a Iso ensures that is n o operation u ntil the inp ut voltage reaches the minimum spec.

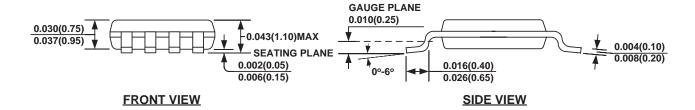
Enable

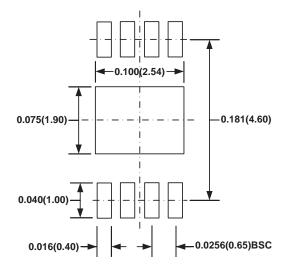
The logic pin disables the switch to redu ce overall supply current .Once the EN pin reaches Logic HIGH, the MP6215 is enabled.

APPLICATION INFORMATION


Power-Supply Considerations

A ceramic bypass capacitor between IN an d GND, close to the device, is re commended. Placing a high-value electrolytic cap acitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Optionally, bypassing the output with a ceramic cap acitor improves the immunity of the device to short-circuit transients.




PACKAGE INFORMATION

MSOP8E (EXPOSED PAD)

TOP VIEW

NOTE:

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) PIN 1 IDENTIFICATION HAS HALF OR FULL CIRCLE OPTION.
- 6) DRAWING MEETS JEDEC MO-187, VARIATION AA-T.
- 7) DRAWING IS NOT TO SCALE.

RECOMMENDED LAND PATTERN

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS product sinto any application. MPS will not assume any legal responsibility for any said applications.